Multi-region relaxed Hall magnetohydrodynamics with flow
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The recent formulations of multi-region relaxed magnetohydrodynamics (MRxMHD) have gener-
alized the famous Woltjer-Taylor states by incorporating partial relaxation and flow. In this paper,
we generalize MRxMHD with flow to include Hall effects, and thereby obtain the partially relaxed
counterparts of the famous double Beltrami states as a special subset. We demonstrate that our
results (in the ideal MHD limit) constitute an important subset of ideal MHD equilibria, and we
also compare our approach against other variational principles presented in the literature.

I. INTRODUCTION

Amongst all fluid descriptions of plasmas, none has
proven to be as simple, relevant and versatile as ideal
magnetohydrodynamics (MHD). Consequently, it has
been widely employed in modelling fusion [1] and astro-
physical [2] plasmas. One of the most crucial aspects of
ideal MHD entails the study of its equilibria. A great
deal of attention has been centred around the idea pro-
posed by [3], in that the plasma energy can be extrem-
ized, subject to certain constraints, namely the so-called
“ideal-constraints” that prevent topological variations of
the magnetic field. In contrast, the Woltjer-Taylor state
[1-6] is obtained by extremizing the magnetic energy,
subject to holding the global magnetic helicity fixed (and
constraints on the global flux and a boundary condition).
This allows a wider class of equilibrium solutions to be
accessed. We note that generalizations of the Woltjer-
Taylor state to include flow have also been widely stud-
ied; see e.g. [7—10] for some early treatments of this sub-
ject.

The crucial assumption most commonly invoked in
computing 3D equilibria in ideal MHD is the existence
of continuously nested flux surfaces. It is possible to re-
lax this assumption, insisting instead that only a finite
number of flux surfaces are present, thereby constitut-
ing a case of partial relaxation. A model that gives rise
to such equilibria can be seen as the generalization of
the Taylor model, and originated in the studies under-
taken by [11-13], and was dubbed multi-region relaxed
MHD (MRxMHD). Subsequently, MRxMHD has been
studied extensively, with a view towards understanding
and extending it, in the works of [14-21]. The stepped
pressure equilibrium code (SPEC) was presented in [22]
based on MRxMHD, and it has been subsequently em-
ployed in multiple contexts such as reverse field pinches
[23], magnetic islands and current sheets [24, 25], and
pressure-driven amplification [20].
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A common feature of ideal MHD and MRxMHD is that
they rely on a similar set of constraints in arriving at the
corresponding relaxed states. However, it is a well-known
that fluid models more encompassing than ideal MHD are
existent in the literature. Such fluid effects play an im-
portant role in certain regimes, especially in space and
astrophysical plasmas [27]. It is, thus, natural to formu-
late relaxation theories for these models along the lines
of Woltjer and Taylor. The most widely studied amongst
them is Hall MHD | |, but equivalent treatments of
two-fluid [36-38] and multi-fluid [39, 40] models can also
be found.

Given the existence of two complementary approaches
that generalize Taylor relaxation, viz. MRxMHD and
Hall MHD, it is natural to look for a relaxation the-
ory that encompasses both approaches. Indeed, this
is the primary objective of this paper — to construct
a MRxMHD theory with Hall effects, which we chris-
ten henceforth as multi-region, relaxed, Hall MHD, or
MRxHMHD. For instance, owing to the property that
Hall MHD is a singular perturbation of ideal MHD,
we show that the partial relaxed states obtained from
MRxHMHD are quite different from their MHD counter-
parts derived in [19, 20].

The outline of the paper is as follows. The rele-
vant background material for carrying out the variational
principle is presented in Section II. A detailed variation is
carried out in Section III, leading to the final partial re-
laxed states of MRxHMHD. We compare the MRxMHD
states with flow against ideal MHD equilibria, and offer
a few general comments, in Section IV. Finally, we con-
clude with a summary of our results and prospects for
future work in Section V.

II. MATHEMATICAL PRELIMINARIES AND
THE VARIATIONAL PRINCIPLE

In this Section, we shall present some of the rele-
vant mathematical properties of Hall MHD and then
set up the procedure to obtain the relaxed states of
MRxHMHD.
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A. The equations and properties of Hall MHD

The governing equations of Hall MHD are
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Note that the equations have been normalized in Alfvénic
units, such that d; = \;/L is the normalized ion skin
depth, where A\; = ¢/(wp; L) is the ion skin depth in fidu-
cial units and L is the appropriate scale length. More-
over, we note that p is the total pressure and it is assumed
to be barotropic and adiabatic, i.e. it obeys the relation
p = op”, where o is a proportionality constant. p, V and
B are the total mass density, the center-of-mass fluid ve-
locity and the magnetic field respectively, and constitute
the dynamical variables of interest.

It is worth remarking that Hall MHD has a (noncanon-
ical) Hamiltonian formulation [41, 42]. The Hamiltonian
formulation of Hall MHD is particularly useful in extract-
ing a special class of invariants known as the Casimirs
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where P = A + d;V and is, sometimes, referred to as
the (ion) canonical momentum. Similarly, we note that
(6) is often referred to as the canonical helicity or the
generalized helicity [28,

A few other points, which we shall call upon later, must
also be stated:

1. If we introduce the electron velocity V., = V —
d;V x B/p, it is easy to show that (3) becomes
akin to the ideal MHD induction equation except
for V. — V.. As a result, it is still viable to speak
of the magnetic flux being conserved, but it is ad-
vected along the electron ‘particle’ trajectory (in
the Lagrangian picture) [44].

2. If we replace V with V. in (1), it is easy to verify
that the expression remains unchanged. This fol-
lows from the vector identity that the divergence
of a curl vanishes. As a result, one may envision
even the density being advected along the electron
trajectory.

3. In [29], it was pointed out that Hall MHD (in
the barotropic or incompressible limit) could be
cast into a pair of coupled vorticity-type equations.
Based on this result, it is possible to construct a
canonical vorticity flux [V x P - dS, which is ad-
vected along the ion trajectory in the Lagrangian
formalism. [45].

4. Thus, it is viable to consider all variables being
advected along the electron trajectory, except for
the composite variable P that is advected along
the ion trajectory.

B. The MRxHMHD variational principle

We shall consider a plasma system that consists of IV
nested plasma regions R;, separated by Hall MHD barri-
ers. The energy is
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whilst the mass, magnetic helicity and canonical helicity

carry over from (4), (5) and (6) respectively. In the multi-
region picture, they correspond to
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where the second equality follows from the relation P =
A + d;V. In addition to the above constraints, we also
consider the toroidal component of the angular momen-
tum, following the approach of [19, 20], as an additional
constraint. Thus, we have
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where R denotes the cylindrical radius, given that we
are operating in this coordinate system. There are sub-
tleties associated with toroidal angular momentum con-
servation, and we refer the reader to [19, 20] for a de-
tailed discussion of the same. In essence, [19] state that
an axisymmetric boundary (interface) that preserves this
property during the relaxation process will ensure the
conservation of (11). As this is undoubtedly a strong
constraint, one can drop it if necessary, but the basic
thrust of the analysis is not affected. It is worth point-
ing out that 3D MHD equilibria such as “snakes” [40]



cannot be modelled, if we operate under the assumption
that (11) is conserved.

We also need to specify the boundary conditions for
our system. These conditions arise from the flux con-
straints, viz. the conservation of the magnetic flux and
the canonical vorticity flux (see Point 3 of Sec. ITA).
The relevant details, in the case of ideal MHD, can be
found in Sec. IV of [17]. When it comes to Hall MHD,
the boundary conditions correspond to B - n = 0 and
V x P -n = 0; subtracting the former from the latter
leads to V x V -n = 0 [33]. Following the approach out-
lined in [47], the flux constraints of Hall MHD translate
to the equivalent conditions

(nx 6A) =—(n-&)B, (12)

nxdP)=—-(n-&)V xP. (13)

In the above expressions, note that &; and &, stand for the
ion and electron displacements respectively. We note that
(13) involves ¢; as the variable P exhibits ion advection,
as noted in Section IT A. Moreover, we also wish to point
out the fact that (12) and (13) are not arbitrary. They
are consequences of the frozen-in flux constraints, except
that the former and latter are advected along different
fluid trajectories.
The energy functional of the MRxHMHD reads as
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where vy, p;, A\ and €; are the Lagrange multipliers.
Also note that the X lo’s are the constrained values of the
respective X;’s.

A comment regarding the magnetic helicity (9) is due.
In its present form, namely (9), the expression for the
magnetic helicity is not gauge invariant. To ensure gauge
invariance, one must include two loop integrals that en-
capsulate the amount of toroidal/poloidal flux contained
within each region, and the loop integrals are computed
about the inner (outer) boundary of a given region in
the poloidal (toroidal) direction. For more details, the
reader is referred to [18, 19]. However, it turns out that
these new terms, even upon inclusion, do not contribute
to the final result, and we have omitted them in our anal-
ysis for the sake of clarity. A similar line of reasoning is
also valid when dealing with the canonical helicity (10).
In both these respects, we follow the approach employed
by [31] in their formulation and analysis of variational
principles for two-fluid plasmas.

III. DERIVATION OF THE PARTIAL RELAXED
STATES WITH HALL EFFECTS

In this Section, we shall use (14) as the functional sub-
ject to extremization, viz. we compute 6WW = 0. By

doing so, we expect to compute the minimum energy
states, but it must be recognized that a rigorous anal-
ysis will also necessitate taking the second variation of
W to ensure that the final result is, indeed, a minima
[48-50]. We shall leave such a procedure for future in-
vestigations, as most formulations of MRxMHD have not
directly addressed this issue [18-20)].

We also note that our approach belongs to the cate-
gory of variational principles that extremize the energy.
An alternative approach, also widely studied in the liter-
ature, is to extremize the entropy instead [10, 38] and a
detailed discussion of this subject can be found in [14].

Before proceeding further, we begin by noting a useful
identity [19, 47, 51] that we shall use in the subsequent
derivations. It corresponds to
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where D and 0D are the volume and bounding surface
respectively, X is the functional under consideration, and
& corresponds to the fluid displacement.

A. The Energy functional

The first variation of the energy functional E; can be
obtained as follows
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The first term in (19) can be further simplified as follows
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and we use the vector calculus identities
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in (20) to obtain the final relation
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We are now free to substitute (12) into the second term
of (23). Next, we take the ensuing result and substitute
it into (19). We obtain

2
4] B—dST = / 0A-(V x B) d37'—/ (n-&) — d?o,
R, 2 Ry OR 2

(24)
and it is important to recognize that the second term on
the RHS of (19) and (24) are the same, but opposite in
sign.

B. The Helicity Functionals
Let us first begin with the magnetic helicity.
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and we can simplify the first term on the RHS by invoking
B = V x A along with (21) and (22) and carrying out
a procedure akin to that undertaken for the magnetic
energy. Upon simplification, we end up with
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and the second term on the LHS vanishes upon using the
boundary condition (12). Thus, we have
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Dealing with the canonical helicity is much harder owing
to its greater complexity. However, we can bypass a great
deal of this complexity if we use the canonical momentum
P as our composite variable. Furthermore, note that (13)
dictates that the boundary conditions are most naturally
interpreted in terms of P as well, since this condition
arises from the conservation of the canonical vorticity
flux. From (ITA), we recall that P is advected along the
ion trajectory, and that it is written in terms of P as per
the second line of (10). Using these facts, we find that
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The second term on the RHS exhibits the label ‘4” since
it’s advected along the ion trajectory. Although P is
comprised of two dynamical variables, we note that the
two vector calculus identities (21) and (22) are still valid.
Hence, we apply them to the first term of (28) and end
up with
§C= [ 6P-(VxP) d*r
Ry
1
+f/ P [nx 0P+ (n-&)V x P|] d*0(29)
2 Jor,
and by using (13) in the second term on the RHS of
the above expression, we see that it vanishes identically.
Hence, we end up with
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where we have used the fact that P = A +d;V to rewrite
our answer in terms of the dynamical variables.

C. The mass and angular momentum functionals

The variation of the angular momentum yields
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The variation of the mass functional leads us to the result
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D. The derivation of the relaxed states and jump
condition

Our final expressions are given by (17), (18), (24), (27),
(30), (31) and (32). Upon setting 6 = 0, we obtain
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which have arisen from the variations with respect to A,
V and p respectively. In addition, we also end up with a
bevy of surface integral terms collectively given by
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and we are free to substitute (35) into the above expres-
sion. A lot of terms cancel leaving us with
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and using the fact that p; = 0;p”, we arrive at the inter-

face condition
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At this stage, it is worth comparing our results with the
ideal MHD counterparts that were obtained in [19, 20].
Before proceeding further, we observe that the chief dif-
ference is that the canonical helicity of Hall MHD must
be replaced by the cross helicity when dealing with ideal
MHD. The rest of the invariants stay the same, implying
that any differences that arise must be because of the
cross vs canonical helicity difference.

Firstly, we commence by noting that the interface con-
dition (38) is the same in both instances. This is not
surprising since the interface condition is a manifestation
of the force balance [52], and it is well known that the
momentum equation of ideal and Hall MHD are identical
to one another.

We also find that (35) is exactly identical to the ideal
MHD result. This is not surprising since the helicities do
not contribute to this equation, and therefore we do not
expect any divergences in the result. Next, let us consider
(33) and (34) and allow d; — 0. Upon comparing with
[19, 20], we lose too many terms and the results do not
match. At first glimpse, it may appear as though there
was an error committed, but it is important to appreciate
the mathematical fact that Hall MHD is a singular per-
turbation of ideal MHD [53] and the cross helicity does
not follow from the canonical helicity simply by letting
d; — 0, as indicated in [42, 54].

Instead, let us take a closer look at (34). We find that
the second term on the RHS is much smaller than the first
since it’s O (d?), whilst the first term is O (d;). Hence,
let us suppose that we drop only the O (d?) in (33) and
(34). Then, we find that our equations do indeed take
on the same form (but with different coefficients) as the
ideal MHD results from [19, 20].

Lastly, we point out an interesting subcase of our pri-
mary results. If we had started with an incompressible
model, we would not have recovered (35). Moreover, if
our system did not conserve toroidal angular momentum
(which can arise in certain circumstances, as discussed
in [19]), it amounts to setting €; — 0 in (34) and (35).
Under these conditions, it is easy to verify that the result-
ing set of equations are the multi-region equivalent of the
famous double Beltrami states obtained for incompress-
ible Hall MHD in [29]. In contrast, if the Hall effects
were neglected (the ideal MHD limit), the above set of
assumptions lead to a Woltjer-Taylor (single Beltrami)
state along with the condition V || B.

IV. A NOTE ON THE MRxMHD EQUILIBRIA

At this stage, we shall take a brief detour, and con-
sider the MRxMHD equilibria derived in [19, 20]. As
described above, a careful treatment of the partial re-
laxed states of MRxHMHD under the limit d; — 0 leads
to the MRxMHD equilibria derived in [19]. We choose to
focus on MRxMHD (instead of MRxHMHD) as we are
interested in understanding how the equilibria of [19],
which give rise to partially relaxed states with flow, com-
pare against ideal MHD equilibria. We shall also contrast
these states against alternative approaches presented in
the literature.

A. Ideal MHD equilibria with flow

Let us begin by writing down the expressions for ideal
MHD equilibria endowed with flow.

V- (pV) =0, (39)
pV-VV =J x B — Vp, (40)
V x (VxB)=0, (41)

where p = op?. It is easy to show that (40) can be
rewritten as follows:
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where we have introduced the notation w =V x V.

B. Partial relaxed states with flow

Here, we list the partially relaxed states with flow that
were obtained in [19]. As mentioned earlier, we can re-
cover these states by taking the limit d; — 0 in our model,
although there are some subtleties involved. The relevant
equations are

VxB= ,ulB + \w, (43)
pv = \B, (44)
ol Ve
— = 4
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and we note that the label ‘I’ is present in the above
equations, as we are looking at MRxMHD. In the con-
tinuum limit, this label can be dropped, and we shall do
henceforth for the sake of simplicity.



C. Comparison of the two sets of equilibria

We shall compare the results of Sec. IV B against those
of Sec. IV A.

We begin by observing that (44) can be expressed as
V || B, or V x B =0. When this condition is satisfied,
it is easy to verify that (41) is automatically satisfied.
Similarly, if we take the divergence of (44), we end up
with V- (pV) = 0 on account of V-B = 0. This condition
is exactly identical to (39). We turn our attention to (42)
now, and (45) ensures that the second term on the RHS
of (42) vanishes, i.e. the term inside the brackets. The
remainder of (42) is given by

wxv=1XB (46)
p

and we shall show that (43) and (44) lead to the above
relation. Let us take the cross product of V with (43).
This leads us to

IXxV=BXxV+4+IwxV, (47)

and we invoke the expression for V, in terms of B, which
is given by (44). We substitute this expression into the
LHS and the first term on the RHS of (47). This leads
us to

JxB

p

A

= Xw x V, (48)

which is clearly identical to (46).

Thus, the purpose of this exercise is now complete.
We have shown that the equilibria derived by [19] form a
valid subset of ideal MHD equilibria. For this reason, it is
plausible that the partial relaxed states derived in [19] (as
well as the generalized states presented herein) constitute
a physically meaningful set of MRxMHD equilibria with
flow.

A few general observations regarding these partial re-
laxed states are in order. By substituting (44) into (43),
we find that

VXBNB+VVX<B), (49)
P

which is clearly a deformation of the Taylor state since
J x B # 0. In fact, we find that a near-Taylor state is
recovered only in two limits that are outlined below.

e When |V| < |B|, we can drop the last term on the
RHS of (43). This leads to a Taylor state to leading
order.

e When the system is nearly incompressible, this en-
sures that p — const in (49), which in turn leads
toJ xB = 0.

The variational principles constructed herein, and in
[19], were Eulerian in nature. A different variational for-
mulation was presented in [21] that relied upon the use of

Lagrangian variables and induced variations. Although
the same interface condition, namely (38), was recovered,
there were some differences in the two approaches. The
final expressions in [21] corresponded to the Taylor state
and the Euler equation for an ideal (neutral) fluid. It is
straightforward to show that these equations also repre-
sent a valid set of the ideal MHD equilibria discussed in
Sec. IV A. However, the relations obtained in [21] do not
match the ones derived in [19], since the latter does not
lead to a Taylor state, except under certain conditions.

The differences probably stem from the fact that p, V
and B are treated as independent variables in the Eule-
rian picture. This is in sharp contrast to the Lagrangian
treatment presented in [21], where the variations in p and
V are expressed in terms of the displacement (along the
lines of the methodology outlined in [55]). On the other
hand, B and p are independent, and their variations are
considered separately; see Eq. (3.21) of [21] for a discus-
sion of the same.

The presence of induced variations also eliminated the
need for the cross helicity (or, in our case, the canoni-
cal helicity) to be included in the variational principle.
We note that this is quite different from most standard
treatments in the literature, see e.g. [7, 9, 31, 306, 38].
It is likely that a clearer picture will emerge once the
SPEC code [22] has been modified to implement flow.
It will then be possible to compare the two approaches
against experiments, or simulations from other sources,
and thereby deduce their relative merits.

V. DISCUSSION AND CONCLUSION

The Woltjer-Taylor states of ideal MHD have proven
to be widely successful in a host of fusion, space and as-
trophysical plasma environments. However, the implicit
assumption of continous (and infinite) nested flux sur-
faces invoked in deriving such states can be relaxed. The
resulting formulation, multi-region relaxed magnetohy-
drodynamics (MRxMHD), has proven to be successful in
many contexts as noted in the Introduction.

Despite the great utility of MRxMHD), especially upon
the inclusion of flow, it is still reliant on a variational
principle that assumes the invariance of the magnetic and
cross helicities, which are ideal MHD invariants. In this
study, we have generalized MRxMHD further by adopt-
ing the framework of Hall MHD and invoking the mag-
netic helicity and the canonical helicity as the invariants
in constructing our variational principle. The presence of
the Hall term introduces some mathematical subtleties,
given that Hall MHD retains residual two-fluid effects:
one of them is manifest in the fact that the canonical
vorticity Vx P =B +d;V x 'V is advected along the ion
trajectory, whilst the magnetic field is advected along the
electron trajectory, as pointed out in [44, 45, 56].

After going through the requisite algebra, we arrive at
the final results, viz. the partial relaxed states given by
(33), (34) and (35), and the interface condition (38). If



we consider the incompressible limit of the former trio of
equations, and assume that 2; — 0, the generalizations of
the famous double Beltrami states [29] are duly obtained.
Thus, MRxMHD with Hall effects (MRxHMHD) plays
an analogous role to MRxMHD since the former leads
to states akin to the double Beltrami states whilst the
latter yields the Woltjer-Taylor (single Beltrami) states.
As the double Beltrami states have been applied fairly
successfully in both fusion and astrophysics, it is natural
to suppose that the MRxHMHD equilibria will also prove
to be useful in modelling the same phenomena.

We have also analyzed the MRxMHD equilibria ob-
tained in [19], which form a subset of the equilibria de-
rived in this paper. We showed that the partial relaxed
states with flow that emerge from the Eulerian varia-
tional principle are a valid and meaningful subset of ideal
MHD equilibria - a fact that lends further credence to our
variational principle, and that of [19]. We also compared
these results against the alternative approach espoused
in [21], which gave rise to a different set of results, and
indicated the potential factors that may be responsible
for this outcome.

In subsequent studies, we hope to pursue two different

lines of approach. We intend to employ the partial re-
laxed states derived in this paper to study systems where
Hall effects play a role; one such example is to extend the
approach presented in [57] to study the magnetospheres
of the Jovian planets. Secondly, we are in the process of
improving the successful SPEC code [22] to include flow,
which can then be used to study a wide range of issues
in fusion plasmas.
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